Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
1.
Front Immunol ; 12: 702764, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745090

RESUMO

The pathophysiology of acute pancreatitis (AP) is not well understood, and the disease does not have specific therapy. Tryptophan metabolite L-kynurenic acid (KYNA) and its synthetic analogue SZR-72 are antagonists of the N-methyl-D-aspartate receptor (NMDAR) and have immune modulatory roles in several inflammatory diseases. Our aims were to investigate the effects of KYNA and SZR-72 on experimental AP and to reveal their possible mode of action. AP was induced by intraperitoneal (i.p.) injection of L-ornithine-HCl (LO) in SPRD rats. Animals were pretreated with 75-300 mg/kg KYNA or SZR-72. Control animals were injected with physiological saline instead of LO, KYNA and/or SZR-72. Laboratory and histological parameters, as well as pancreatic and systemic circulation were measured to evaluate AP severity. Pancreatic heat shock protein-72 and IL-1ß were measured by western blot and ELISA, respectively. Pancreatic expression of NMDAR1 was investigated by RT-PCR and immunohistochemistry. Viability of isolated pancreatic acinar cells in response to LO, KYNA, SZR-72 and/or NMDA administration was assessed by propidium-iodide assay. The effects of LO and/or SZR-72 on neutrophil granulocyte function was also studied. Almost all investigated laboratory and histological parameters of AP were significantly reduced by administration of 300 mg/kg KYNA or SZR-72, whereas the 150 mg/kg or 75 mg/kg doses were less or not effective, respectively. The decreased pancreatic microcirculation was also improved in the AP groups treated with 300 mg/kg KYNA or SZR-72. Interestingly, pancreatic heat shock protein-72 expression was significantly increased by administration of SZR-72, KYNA and/or LO. mRNA and protein expression of NMDAR1 was detected in pancreatic tissue. LO treatment caused acinar cell toxicity which was reversed by 250 µM KYNA or SZR-72. Treatment of acini with NMDA (25, 250, 2000 µM) did not influence the effects of KYNA or SZR-72. Moreover, SZR-72 reduced LO-induced H2O2 production of neutrophil granulocytes. KYNA and SZR-72 have dose-dependent protective effects on LO-induced AP or acinar toxicity which seem to be independent of pancreatic NMDA receptors. Furthermore, SZR-72 treatment suppressed AP-induced activation of neutrophil granulocytes. This study suggests that administration of KYNA and its derivative could be beneficial in AP.


Assuntos
Ácido Cinurênico/análogos & derivados , Ácido Cinurênico/uso terapêutico , Pancreatite Necrosante Aguda/tratamento farmacológico , Animais , Interleucina-1beta/análise , Ácido Cinurênico/farmacologia , Masculino , Microcirculação/efeitos dos fármacos , N-Metilaspartato/farmacologia , Pancreatite Necrosante Aguda/fisiopatologia , Gravidade do Paciente , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/análise
2.
Laryngoscope ; 131(10): 2332-2340, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34156095

RESUMO

OBJECTIVES/HYPOTHESIS: Tinnitus can develop due to, or be aggravated by, stress in a rat model. To investigate stress as a possible causal factor in the development of tinnitus, we designed an animal study that included tinnitus behavior and excitatory/inhibitory neurotransmitter expression after noise exposure as well as restraint stress. STUDY DESIGN: An experimental animal study. METHODS: Wistar rats were grouped according to single or double exposure to noise and restraint stress. The noise exposure (NE) group was subjected to 110 dB sound pressure level (SPL) of 16 kHz narrow-band noise (NBN) for 1 hour, and the restraint stress (RS) group was restrained for 1 hour with or without noise exposure. Gap prepulse inhibition of the acoustic startle (GPIAS) reflex was measured at an NBN of 16 kHz to investigate tinnitus development. Various immunohistopathologic and molecular biologic studies were undertaken to evaluate possible mechanisms of tinnitus development after noise and/or restraint stress. RESULTS: The RS-only group showed a reduced GPIAS response, which is a reliable sign of tinnitus development. In the double-stimulus groups, more tinnitus-development signs of reduced GPIAS responses were observed. The expression of γ-aminobutyric acid A receptor α1 (GABAAR α1) in the hippocampus decreased in the NE│RS group. Increased N-methyl-d-aspartate receptor1 intensities in the NE│RS group and decreased GABAAR α1 intensities in the RS and NE│RS groups were observed in the CA3 region of the hippocampus. CONCLUSIONS: Tinnitus appeared to develop after stress alone in this animal study. An imbalance in excitatory and inhibitory neurotransmitters in the hippocampus may be related to the development of tinnitus after acute NE and/or stress. LEVEL OF EVIDENCE: NA Laryngoscope, 131:2332-2340, 2021.


Assuntos
Região CA3 Hipocampal/patologia , Ruído/efeitos adversos , Estresse Psicológico/complicações , Zumbido/etiologia , Estimulação Acústica/efeitos adversos , Estimulação Acústica/métodos , Animais , Modelos Animais de Doenças , Humanos , Masculino , Ratos , Receptores de GABA-A/análise , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/análise , Receptores de N-Metil-D-Aspartato/metabolismo , Reflexo de Sobressalto , Estresse Psicológico/psicologia , Zumbido/diagnóstico , Zumbido/patologia , Zumbido/psicologia
3.
Mediators Inflamm ; 2021: 6676063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935591

RESUMO

Trigeminal neuralgia pain remains a challenge to treat. Natural compounds may be promising options for relieving pain. This study was aimed at investigating the effects of aconitine in a rat model of trigeminal neuralgia pain. Infraorbital nerve chronic constriction injury was performed in adult Wistar Albino rats. After the neuropathic pain developed, the rats were assigned to one of the treatment groups: carbamazepine 40 or 80 mg/kg; aconitine 0.25, 0.50, or 0.75 mg/kg; or saline injection (control group). Behavioral testing with von Frey filaments and the rotarod test were carried out before the surgical procedure and on the 24th to 29th postoperative days. Following the completion of tests, ipsilateral and contralateral spinal cords were harvested for Western blot analyses to assess NR-1 protein expression. ANOVA followed by Mann-Whitney U test was performed for the statistical analyses. P values of <0.05 were considered significant. Aconitine significantly reduced mechanical sensitivity in a dose-dependent manner. A significant reduction in motor coordination was noted for the higher doses of aconitine which was similar with the 40 and 80 mg/kg doses of carbamazepine. NR-1 expression was reduced in the ipsilateral spinal cord, whereas no significant difference was noted between the groups in the expression of NR-1 in the contralateral spinal cord. Aconitine had a significant pain relieving effect, which was similar to carbamazepine, in a dose-dependent manner. Aconitine may be an alternative pharmacological agent for the control of trigeminal neuralgia pain.


Assuntos
Aconitina/uso terapêutico , Neuralgia do Trigêmeo/tratamento farmacológico , Aconitina/farmacologia , Animais , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/análise , Medula Espinal/química , Neuralgia do Trigêmeo/metabolismo
4.
J Comp Neurol ; 529(12): 3194-3205, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33843051

RESUMO

Major depressive disorder involves changes in synaptic structure and function, but the molecular underpinnings of these changes are still not established. In an initial pilot experiment, whole-brain synaptosome screening with quantitative western blotting was performed to identify synaptic proteins that may show concentration changes in a congenital rat learned helplessness model of depression. We found that the N-methyl-d-aspartate receptor (NMDAR) subunits GluN2A/GluN2B, activity-regulated cytoskeleton-associated protein (Arc) and syntaxin-1 showed significant concentration differences between congenitally learned helpless (LH) and nonlearned helpless (NLH) rats. Having identified these three proteins, we then performed more elaborate quantitative immunogold electron microscopic analyses of the proteins in a specific synapse type in the dorsal hippocampus: the Schaffer collateral synapse in the CA1 region. We expanded the setup to include also unstressed wild-type (WT) rats. The concentrations of the proteins in the LH and NLH groups were compared to WT animals. In this specific synapse, we found that the concentration of NMDARs was increased in postsynaptic spines in both LH and NLH rats. The concentration of Arc was significantly increased in postsynaptic densities in LH animals as well as in presynaptic cytoplasm of NLH rats. The concentration of syntaxin-1 was significantly increased in both presynaptic terminals and postsynaptic spines in LH animals, while pre- and postsynaptic syntaxin-1 concentrations were significantly decreased in NLH animals. These protein changes suggest pathways by which synaptic plasticity may be increased in dorsal hippocampal Schaffer collateral synapses during depression, corresponding to decreased synaptic stability.


Assuntos
Proteínas do Citoesqueleto/biossíntese , Depressão/metabolismo , Hipocampo/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Receptores de N-Metil-D-Aspartato/biossíntese , Sinapses/metabolismo , Sintaxina 1/biossíntese , Animais , Proteínas do Citoesqueleto/análise , Modelos Animais de Doenças , Desamparo Aprendido , Hipocampo/química , Proteínas do Tecido Nervoso/análise , Ratos , Receptores de N-Metil-D-Aspartato/análise , Sinapses/química , Sintaxina 1/análise
5.
Nat Neurosci ; 24(6): 777-785, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33927400

RESUMO

Transient information input to the brain leads to persistent changes in synaptic circuits, contributing to the formation of memory engrams. Pre- and postsynaptic structures undergo coordinated functional and structural changes during this process, but how such changes are achieved by their component molecules remains largely unknown. We found that activated CaMKII, a central player of synaptic plasticity, undergoes liquid-liquid phase separation with the NMDA-type glutamate receptor subunit GluN2B. Due to CaMKII autophosphorylation, the condensate stably persists even after Ca2+ is removed. The selective binding of activated CaMKII with GluN2B cosegregates AMPA receptors and the synaptic adhesion molecule neuroligin into a phase-in-phase assembly. In this way, Ca2+-induced liquid-liquid phase separation of CaMKII has the potential to act as an activity-dependent mechanism to crosslink postsynaptic proteins, which may serve as a platform for synaptic reorganization associated with synaptic plasticity.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/análise , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Extração Líquido-Líquido/métodos , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Ativação Enzimática/fisiologia , Feminino , Masculino , Proteínas de Membrana/genética , Camundongos , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/análise , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/análise , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
6.
J Neurosci ; 41(13): 2944-2963, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33593859

RESUMO

Synchronous activity of cortical inhibitory interneurons expressing parvalbumin (PV) underlies expression of cortical γ rhythms. Paradoxically, deficient PV inhibition is associated with increased broadband γ power in the local field potential. Increased baseline broadband γ is also a prominent characteristic in schizophrenia and a hallmark of network alterations induced by NMDAR antagonists, such as ketamine. Whether enhanced broadband γ is a true rhythm, and if so, whether rhythmic PV inhibition is involved or not, is debated. Asynchronous and increased firing activities are thought to contribute to broadband power increases spanning the γ band. Using male and female mice lacking NMDAR activity specifically in PV neurons to model deficient PV inhibition, we here show that neuronal activity with decreased synchronicity is associated with increased prefrontal broadband γ power. Specifically, reduced spike time precision and spectral leakage of spiking activity because of higher firing rates (spike "contamination") affect the broadband γ band. Desynchronization was evident at multiple time scales, with reduced spike entrainment to the local field potential, reduced cross-frequency coupling, and fragmentation of brain states. Local application of S(+)-ketamine in (control) mice with intact NMDAR activity in PV neurons triggered network desynchronization and enhanced broadband γ power. However, our investigations suggest that disparate mechanisms underlie increased broadband γ power caused by genetic alteration of PV interneurons and ketamine-induced power increases in broadband γ. Our study confirms that enhanced broadband γ power can arise from asynchronous activities and demonstrates that long-term deficiency of PV inhibition can be a contributor.SIGNIFICANCE STATEMENT Brain oscillations are fundamental to the coordination of neuronal activity across neurons and structures. γ oscillations (30-80 Hz) have received particular attention through their association with perceptual and cognitive processes. Synchronous activity of inhibitory parvalbumin (PV) interneurons generates cortical γ oscillation, but, paradoxically, PV neuron deficiency is associated with increases in γ oscillations. We here reconcile this conundrum and show how deficient PV inhibition can lead to increased and asynchronous excitatory firing, contaminating the local field potential and manifesting as increased γ power. Thus, increased γ power does not always reflect a genuine rhythm. Further, we show that ketamine-induced γ increases are caused by separate network mechanisms.


Assuntos
Potenciais de Ação/fisiologia , Encéfalo/metabolismo , Ritmo Gama/fisiologia , Interneurônios/metabolismo , Rede Nervosa/metabolismo , Animais , Química Encefálica/fisiologia , Feminino , Interneurônios/química , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Rede Nervosa/química , Parvalbuminas/análise , Parvalbuminas/metabolismo , Receptores de N-Metil-D-Aspartato/análise , Receptores de N-Metil-D-Aspartato/metabolismo
7.
Histochem Cell Biol ; 155(6): 719-726, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33550485

RESUMO

We previously reported the immunoreactivity for the vesicular glutamate transporter 2 (VGLUT2) in afferent nerve terminals attached to chemoreceptor type I cells of the carotid body (CB), suggesting that glutamate is released from afferent terminals to stimulate these cells. In the present study, we examined the immunoreactivity for the glutamate-binding subunits of N-methyl-D-aspartate (NMDA) receptors, GluN2A and GluN2B in the rat CB, and the immunohistochemical relationships between these subunits and VGLUT2. Immunoreactivities for GluN2A and GluN2B were predominant in a subpopulation of tyrosine hydroxylase-immunoreactive type I cells rather than those of dopamine beta-hydroxylase-immunoreactive cells. Punctate VGLUT2-immunoreactive products were attached to GluN2A- and GluN2B-immunoreactive type I cells. Bassoon-immunoreactive products were localized between VGLUT2-immunoreactive puncta and type I cells immunoreactive for GluN2A and GluN2B. These results suggest that afferent nerve terminals release glutamate by exocytosis to modulate chemosensory activity of a subpopulation of type I cells via GluN2A- and GluN2B subunits-containing NMDA receptors.


Assuntos
Corpo Carotídeo/metabolismo , Terminações Nervosas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Animais , Corpo Carotídeo/química , Ácido Glutâmico/metabolismo , Masculino , Terminações Nervosas/química , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/análise
8.
Pharmacol Rep ; 73(1): 309-315, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33025395

RESUMO

BACKGROUND: Schizophrenia is a common mental illness whose pathogenesis is still unknown. The vulnerability and stress model in schizophrenia assume that susceptibility to the disease is mainly associated with genes. Of the five symptomatic dimensions of schizophrenia, cognitive impairment appears to be most associated with the pathogenesis of schizophrenia. The aim of the study was to explore whether selected nucleotide variants in GRIN1, GRIN2A, and GRIN2B encoding subunits of the N-methyl-D-aspartate receptor (NMDA-R) receptor occur in a selected group of patients with treatment resistant schizophrenia with cognitive impairment. METHODS: The study included 45 patients diagnosed with super refractory schizophrenia, all with cognitive deficits and chronically psychotic. DNA fragments including the studied polymorphisms of the NMDA receptors subunit genes were amplified by polymerase chain reaction and subjected to sequencing. RESULTS: The study did not confirm the presence of any of the four selected single-nucleotide variants in GRIN1, GRIN2A, and GRIN2B subunits of NMDA-R in the study group. CONCLUSION: Results of the study indicated that the selected single-nucleotide variants are not associated both with resistance to clozapine and the presence of cognitive deficits in schizophrenia. It is possible, however, that a more extensive sequencing along with analyzing the expression of these genes may reveal different single-nucleotide variants than those assumed in the study.


Assuntos
Antipsicóticos/uso terapêutico , Clozapina/uso terapêutico , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Adulto , Idoso , Biomarcadores , Estudos de Casos e Controles , DNA/química , DNA/genética , Resistência a Medicamentos , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/análise , Polimorfismo de Nucleotídeo Único/genética , Receptores de N-Metil-D-Aspartato/análise , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos
9.
Radiat Oncol ; 15(1): 269, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228731

RESUMO

BACKGROUND: Whole-brain radiotherapy is a primary treatment for brain tumors and brain metastasis, but it also induces long-term undesired effects. Since cognitive impairment can occur, research on the etiology of secondary effects has focused on the hippocampus. Often overlooked, the hypothalamus controls critical homeostatic functions, some of which are also susceptible after whole-brain radiotherapy. Therefore, using whole-brain irradiation (WBI) in a rat model, we measured neurotransmitters and receptors in the hypothalamus. The prefrontal cortex and brainstem were also analyzed since they are highly connected to the hypothalamus and its regulatory processes. METHODS: Male Wistar rats were exposed to WBI with 11 Gy (Biologically Effective Dose = 72 Gy). After 1 month, we evaluated changes in gamma-aminobutyric acid (GABA), glycine, taurine, aspartate, glutamate, and glutamine in the hypothalamus, prefrontal cortex, and brainstem according to an HPLC method. Ratios of Glutamate/GABA and Glutamine/Glutamate were calculated. Through Western Blott analysis, we measured the expression of GABAa and GABAb receptors, and NR1 and NR2A subunits of NMDA receptors. Changes were analyzed comparing results with sham controls using the non-parametric Mann-Whitney U test (p < 0.05). RESULTS: WBI with 11 Gy induced significantly lower levels of GABA, glycine, taurine, aspartate, and GABAa receptor in the hypothalamus. Also, in the hypothalamus, a higher Glutamate/GABA ratio was found after irradiation. In the prefrontal cortex, WBI induced significant increases of glutamine and glutamate, Glutamine/Glutamate ratio, and increased expression of both GABAa receptor and NMDA receptor NR1 subunit. The brainstem showed no statistically significant changes after irradiation. CONCLUSION: Our findings confirm that WBI can affect rat brain regions differently and opens new avenues for study. After 1 month, WBI decreases inhibitory neurotransmitters and receptors in the hypothalamus and, conversely, increases excitatory neurotransmitters and receptors in the prefrontal cortex. Increments in Glutamate/GABA in the hypothalamus and Glutamine/Glutamate in the frontal cortex indicate a neurochemical imbalance. Found changes could be related to several reported radiotherapy secondary effects, suggesting new prospects for therapeutic targets.


Assuntos
Irradiação Craniana , Hipotálamo/efeitos da radiação , Neurotransmissores/análise , Córtex Pré-Frontal/efeitos da radiação , Receptores de GABA/análise , Receptores de N-Metil-D-Aspartato/análise , Animais , Química Encefálica/efeitos da radiação , Hipotálamo/química , Masculino , Córtex Pré-Frontal/química , Ratos , Ratos Wistar
10.
Biochem Biophys Res Commun ; 530(3): 603-608, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32747091

RESUMO

Anesthetic sevoflurane could induce neurotoxicity in developing brain and cause adverse neurobehavioral outcomes in mice, including inattention, social interaction deficit, and learning and memory impairment. However, there is less data on the effect of anesthesia plus surgery on social interaction behavior. Therefore, we investigated whether the combination of anesthesia and surgical stimulation could induce behavioral and biochemical changes in mice. Firstly, the six-day-old mice were received either 3% sevoflurane anesthesia or abdominal surgery under sevoflurane anesthesia. Then, these mice were scheduled to social interaction test in three-chambered social paradigm at one-month-old. In addition, the brain tissues of neonatal mice were harvested at 24 h after treatment, for measuring the levels of OXTR and NMDAR1 in Western blot analysis. We found that neonatal anesthesia with sevoflurane in a clinically-relevant dosage could not induce social interaction deficit. Nevertheless, anesthesia plus surgery was able to impair preference for social novelty in mice. Moreover, anesthesia plus surgery decreased the levels of OXTR in hippocampus and cortex of mice, as well as NMDAR1 in hippocampus. Collectively, these results suggested that anesthesia plus surgery could impair social novelty preference, but not sociability in mice, and that social memory might be more vulnerable than social affiliation in biological property. Furthermore, reduction in the levels of cortex OXTR and hippocampus NMDAR1 could be associated with social recognition memory in mice.


Assuntos
Abdome/cirurgia , Anestésicos Inalatórios/farmacologia , Sevoflurano/farmacologia , Fatores Etários , Anestésicos Inalatórios/efeitos adversos , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Feminino , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Receptores de N-Metil-D-Aspartato/análise , Receptores de Ocitocina/análise , Sevoflurano/efeitos adversos , Comportamento Social
11.
Sci Rep ; 10(1): 11405, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32647191

RESUMO

Previously, we found that in dissociated hippocampal cultures the proportion of large spines (head diameter ≥ 0.6 µm) was larger in cultures from female than from male animals. In order to rule out that this result is an in vitro phenomenon, we analyzed the density of large spines in fixed hippocampal vibratome sections of Thy1-GFP mice, in which GFP is expressed only in subpopulations of neurons. We compared spine numbers of the four estrus cycle stages in females with those of male mice. Remarkably, total spine numbers did not vary during the estrus cycle, while estrus cyclicity was evident regarding the number of large spines and was highest during diestrus, when estradiol levels start to rise. The average total spine number in females was identical with the spine number in male animals. The density of large spines, however, was significantly lower in male than in female animals in each stage of the estrus cycle. Interestingly, the number of spine apparatuses, a typical feature of large spines, did not differ between the sexes. Accordingly, NMDA-R1 and NMDA-R2A/B expression were lower in the hippocampus and in postsynaptic density fractions of adult male animals than in those of female animals. This difference could already be observed at birth for NMDA-R1, but not for NMDA-R2A/B expression. In dissociated embryonic hippocampal cultures, no difference was seen after 21 days in culture, while the difference was evident in postnatal cultures. Our data indicate that hippocampal neurons are differentiated in a sex-dependent manner, this differentiation being likely to develop during the perinatal period.


Assuntos
Região CA1 Hipocampal/citologia , Espinhas Dendríticas/ultraestrutura , Caracteres Sexuais , Envelhecimento , Animais , Animais Recém-Nascidos , Região CA1 Hipocampal/crescimento & desenvolvimento , Células Cultivadas , Estro , Feminino , Genes Reporter , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Cultura Primária de Células , Células Piramidais/ultraestrutura , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/análise
13.
Int J Neuropsychopharmacol ; 23(5): 311-318, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32060512

RESUMO

BACKGROUND: Glutamate is an excitatory neurotransmitter binding to 3 classes of receptors, including the N-methyl, D-aspartate (NMDA) receptor. NMDA receptor binding is lower in major depression disorder and suicide. NMDA receptor blocking with ketamine can have antidepressant and anti-suicide effects. Early-life adversity (ELA) may cause glutamate-mediated excitotoxicity and is more common with major depression disorder and in suicide decedents. We sought to determine whether NMDA-receptor binding is altered with suicide and ELA. METHODS: A total 52 postmortem cases were organized as 13 quadruplets of suicide and non-suicide decedents matched for age, sex, and postmortem interval, with or without reported ELA (≤16 years). Tissue blocks containing dorsal prefrontal (BA8), dorsolateral prefrontal (BA9), or anterior cingulate (BA24) cortex were collected at autopsy. Psychiatrically healthy controls and suicide decedents underwent psychological autopsy to determine psychiatric diagnoses and details of childhood adversity. NMDA receptor binding was determined by quantitative autoradiography of [3H]MK-801 binding (displaced by unlabeled MK-801) in 20-µm-thick sections. RESULTS: [3H]MK-801 binding was not associated with suicide in BA8, BA9, or BA24. However, [3H]MK-801 binding with ELA was less in BA8, BA9, and BA24 independent of suicide (P < .05). [3H]MK-801 binding was not associated with age or postmortem interval in any brain region or group. CONCLUSIONS: Less NMDA receptor binding with ELA is consistent with the hypothesis that stress can cause excitotoxicity via excessive glutamate, causing either NMDA receptor downregulation or less receptor binding due to neuron loss consequent to the excitotoxicity.


Assuntos
Experiências Adversas da Infância/psicologia , Giro do Cíngulo/química , Córtex Pré-Frontal/química , Receptores de N-Metil-D-Aspartato/análise , Suicídio/psicologia , Adolescente , Adulto , Autopsia , Autorradiografia , Estudos de Casos e Controles , Maleato de Dizocilpina/química , Regulação para Baixo , Antagonistas de Aminoácidos Excitatórios/química , Feminino , Giro do Cíngulo/fisiopatologia , Humanos , Masculino , Ensaio Radioligante
14.
Hear Res ; 388: 107883, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31981822

RESUMO

Animal-studies associate age-related hearing loss (presbycusis) with decreasing number of spiral ganglion neurons (SGNs) in Rosenthal's canal (RC) of cochlea. The excitatory neurotransmitter for SGNs is glutamate (through its receptor NMDAR 2B), which can be neurotoxic through Ca2+ overload. Neurotoxicity is balanced by calcium-binding proteins (CBPs) like Parvalbumin (PV), which is the predominant CBP of the SGNs. To estimate the volume of the RC and total number of SGNs that are immunoreactive to PV and NMDAR 2B, we used unbiased stereology in 35 human cochleae derived from cadavers of persons from 2nd to 8th decade of life (subsequently statistically divided into two groups) and compared them to the total number of cresyl violet (CV) stained SGNs. We also estimated the volume of individual neurons and their nuclei. Regression analysis was made on estimated parameters against age. Hierarchical-cluster analysis was done on the neuronal against neuronal nuclear volumes.The average volume of the RC did not change with increasing age (p = 0.4115). The total number of SGNs (CV-stained and those separately expressing PV and NMDAR 2B) significantly decreased with age (p < 0.001). We identified three distinct populations of neurons on the basis of their volumes among SGNs. Thus, there is significant age-related decline in the total number of SGNs, which starts early in life. It may be due to ambient noise and inadequate neutralisation of excitotoxicity.


Assuntos
Envelhecimento/metabolismo , Neurônios/química , Parvalbuminas/análise , Presbiacusia/metabolismo , Receptores de N-Metil-D-Aspartato/análise , Gânglio Espiral da Cóclea/química , Adolescente , Adulto , Fatores Etários , Idoso , Envelhecimento/patologia , Benzoxazinas , Cadáver , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Neurônios/patologia , Presbiacusia/patologia , Gânglio Espiral da Cóclea/patologia , Coloração e Rotulagem , Adulto Jovem
15.
J Biol Chem ; 295(2): 619-630, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31819012

RESUMO

Growth-associated protein 43 (GAP-43) plays a central role in the formation of presynaptic terminals, synaptic plasticity, and axonal growth and regeneration. During development, GAP-43 is found in axonal extensions of most neurons. In contrast, in the mature brain, its expression is restricted to a few presynaptic terminals and scattered axonal growth cones. Urokinase-type plasminogen activator (uPA) is a serine proteinase that, upon binding to its receptor (uPAR), catalyzes the conversion of plasminogen into plasmin and activates signaling pathways that promote cell migration, proliferation, and survival. In the developing brain, uPA induces neuritogenesis and neuronal migration. In contrast, the expression and function of uPA in the mature brain are poorly understood. However, recent evidence reveals that different forms of injury induce release of uPA and expression of uPAR in neurons and that uPA/uPAR binding triggers axonal growth and synapse formation. Here we show that binding of uPA to uPAR induces not only the mobilization of GAP-43 from the axonal shaft to the presynaptic terminal but also its activation in the axonal bouton by PKC-induced calcium-dependent phosphorylation at Ser-41 (pGAP-43). We found that this effect requires open presynaptic N-methyl-d-aspartate receptors but not plasmin generation. Furthermore, our work reveals that, following its activation by uPA/uPAR binding, pGAP-43 colocalizes with presynaptic vesicles and triggers their mobilization to the synaptic release site. Together, these data reveal a novel role of uPA as an activator of the synaptic vesicle cycle in cerebral cortical neurons via its ability to induce presynaptic recruitment and activation of GAP-43.


Assuntos
Proteína GAP-43/metabolismo , Sinapses/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Proteína GAP-43/análise , Camundongos , Neurônios/citologia , Neurônios/metabolismo , Fosforilação , Receptores de N-Metil-D-Aspartato/análise , Receptores de N-Metil-D-Aspartato/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/análise
16.
Int J Mol Sci ; 20(16)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426446

RESUMO

The Glutamate Receptor Ionotropic NMDA-Associated Protein 1 (GRINA) belongs to the Lifeguard family and is involved in calcium homeostasis, which governs key processes, such as cell survival or the release of neurotransmitters. GRINA is mainly associated with membranes of the endoplasmic reticulum, Golgi, endosome, and the cell surface, but its presence in the nucleus has not been explained yet. Here we dissect, with the help of different software tools, the potential roles of GRINA in the cell and how they may be altered in diseases, such as schizophrenia or celiac disease. We describe for the first time that the cytoplasmic N-terminal half of GRINA (which spans a Proline-rich domain) contains a potential DNA-binding sequence, in addition to cleavage target sites and probable PY-nuclear localization sequences, that may enable it to be released from the rest of the protein and enter the nucleus under suitable conditions, where it could participate in the transcription, alternative splicing, and mRNA export of a subset of genes likely involved in lipid and sterol synthesis, ribosome biogenesis, or cell cycle progression. To support these findings, we include additional evidence based on an exhaustive review of the literature and our preliminary data of the protein-protein interaction network of GRINA.


Assuntos
Cálcio/metabolismo , Núcleo Celular/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Cátions Bivalentes/metabolismo , Homeostase , Humanos , Mapas de Interação de Proteínas , Transporte de RNA , Receptores de N-Metil-D-Aspartato/análise
17.
Nat Neurosci ; 22(7): 1053-1056, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209376

RESUMO

The lateral habenula encodes aversive stimuli contributing to negative emotional states during drug withdrawal. Here we report that morphine withdrawal in mice leads to microglia adaptations and diminishes glutamatergic transmission onto raphe-projecting lateral habenula neurons. Chemogenetic inhibition of this circuit promotes morphine withdrawal-like social deficits. Morphine withdrawal-driven synaptic plasticity and reduced sociability require tumor necrosis factor-α (TNF-α) release and neuronal TNF receptor 1 activation. Hence, habenular cytokines control synaptic and behavioral adaptations during drug withdrawal.


Assuntos
Citocinas/fisiologia , Habenula/fisiologia , Morfina/efeitos adversos , Comportamento Social , Síndrome de Abstinência a Substâncias/fisiopatologia , Transmissão Sináptica/fisiologia , Adaptação Psicológica , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/fisiologia , Naloxona/toxicidade , Plasticidade Neuronal , Distribuição Aleatória , Receptores de Glutamato/análise , Receptores de N-Metil-D-Aspartato/análise , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia , Síndrome de Abstinência a Substâncias/psicologia , Fator de Necrose Tumoral alfa/fisiologia
18.
Med Sci Monit ; 25: 135-141, 2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30610831

RESUMO

BACKGROUND In the recent years, there has been increasing interest in traditional Chinese medicine as a neuroprotective nutrient in the management of chronic neurodegenerative disease, such as diabetic cognitive decline. Astragalus polysacharin (APS), a Chinese herb extract, is a biologically active treatment for neurodegenerative diseases. Therefore, in the present study, we investigated the neuroprotective effects of APS (20 mg/kg) on diabetes-induced memory impairments in Sprague-Dawley (SD) rats and explored its underlying mechanisms of action. MATERIAL AND METHODS Thirty SD rats were randomly divided into a control group (CON group, n=10), a diabetic model (DM) group (n=10), and an APS group (n=10). We administered 55 mg/kg streptozotocin (STZ, Sigma) by intraperitoneal injection to induce a diabetic model. Food and water intake, body weight, and blood fasting plasma glucose (FPG) were measured. The Morris water maze test (MWM) was used to assess learning and memory ability, and we measured levels of N-methyl-D-aspartate receptor (NMDA), calcium/calmodulin-dependent protein kinase II (CaMKII), and cAMP response element-binding protein (CREB) in the hippocampus. RESULTS APS (20 mg/kg) administration decreased the rats' fasting plasma glucose (FPG) levels and body weight. APS (20 mg/kg) administration improved the cognitive performance of diabetes-induced rats in the Morris water maze test. APS (20 mg/kg) administration reduced the number of dead cells in the CA1 region of the hippocampus. Furthermore, APS (20 mg/kg) administration obviously upregulated the phosphorylation levels CREB, NMDA, and CaMK II. CONCLUSIONS These results suggest that APS has the neuroprotective effects, and it may be a candidate for treatment of neurodegenerative diseases such as diabetic cognitive impairment.


Assuntos
Astrágalo/química , Memória/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Astrágalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/análise , Disfunção Cognitiva/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/análise , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Medicamentos de Ervas Chinesas/farmacologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/análise , Estreptozocina
19.
Angew Chem Int Ed Engl ; 57(50): 16364-16369, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30347512

RESUMO

Super-resolution microscopy requires small fluorescent labels. We report the application of genetic code expansion in combination with bioorthogonal click chemistry to label the NR1 domain of the NMDA receptor. We generated NR1 mutants incorporating an unnatural amino acid at various positions in order to attach small organic fluorophores such as Cy5-tetrazine site-specifically to the extracellular domain of the receptor. Mutants were optimized with regard to protein expression, labeling efficiency and receptor functionality as tested by fluorescence microscopy and whole-cell patch clamp. The results show that bioorthogonal click chemistry in combination with small organic dyes is superior to available immunocytochemistry protocols for receptor labeling in live and fixed cells and enables single-molecule sensitive super-resolution microscopy experiments.


Assuntos
Carbocianinas/química , Química Click/métodos , Corantes Fluorescentes/química , Receptores de N-Metil-D-Aspartato/análise , Fluorescência , Células HEK293 , Humanos , Microscopia de Fluorescência , Modelos Moleculares , Mutação , Imagem Óptica , Domínios Proteicos , Engenharia de Proteínas , Receptores de N-Metil-D-Aspartato/genética , Coloração e Rotulagem
20.
Cell Calcium ; 74: 73-85, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29966860

RESUMO

Cellular calcium signaling events are transient. Hence they are observed in real time using fluorescence imaging or electrophysiological methods that require sophisticated instrumentation and specialized skills. For high throughput assays simple and inexpensive techniques are desirable. Many calcium channels that serve as drug targets have subtypes arising from diverse subunit combinations. These need to be targeted selectively for achieving efficacy and for avoiding side effects in therapies. This in turn increases the number of calcium channels that act as drug targets. We report a novel method for intracellular calcium sensing that utilizes the calcium dependent stable interaction between CaM kinase II (CaMKII) and its ligands such as the NMDA receptor subunit GluN2B. The CaMKII-GluN2B complex formed persists as a memory of the transient increase in calcium. In a cell-based assay system GFP-α-CaMKII expressed in the cytosol responds to calcium by translocating towards GluN2B sequence motif exogenously expressed on mitochondria or endoplasmic reticulum. The resulting punctate fluorescence pattern serves as the signal for intracellular calcium release. The pattern is stable, unaffected by sample processing and is observable without real time imaging. The activities of calcium channel proteins heterologously expressed in HEK-293 cells were detected with specificity using this technique. A calcium sensor vector and a calcium sensor cell line were developed as tools to perform this technique. This technique being simple and less expensive could significantly facilitate high throughput screening in calcium channel drug discovery.


Assuntos
Técnicas Biossensoriais/métodos , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Cálcio/análise , Canais de Cálcio/análise , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/análise , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células HEK293 , Humanos , Reação em Cadeia da Polimerase/métodos , Receptores de N-Metil-D-Aspartato/análise , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...